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Objectives of multi-arm multi-stage trials

Aim: Comparison of several treatments to a common control

Advantages:

less patients needed than for separate controlled clinical trials

especially important for limited set of patients (rare diseases, children)

larger number of patients are randomised to experimental treatments

allows changes to be made during the trial using the trial data so far,
e.g. stopping for efficacy or futility

Objective: Identify all
treatments that are superior to

control

Objective: Identify at least one
treatment that is superior to

control

→ different kind of stopping rules!!
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Multi-arm multi-stage trials

Design setup: group sequential Dunnett test

control of the FamilyWise Error Rate (FWER) = 0.025

comparison of two treatments to a control

normal endpoints, variance known

one sided tests: HA : µA − µC ≤ 0 and HB : µB − µC ≤ 0

two stage group sequential trial: one interim analysis at Nmax
2

power to reject at least one hypothesis = 0.8

ZA,i , ZB,i are the cumulative z-statistics at stage i=1,2
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Classical group sequential Dunnett tests with “separate stopping”
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Classical group sequential Dunnett tests with “separate stopping”

Classical group sequential Dunnett tests

Objective: Identify all treatments that are superior to control

“separate stopping rule”:
Treatment arms, for which a stopping boundary is crossed, stop.

E.g.:

→ HB is rejected at interim
→ A can go on and is tested again at the end

Magirr, Jaki, Whitehead (2012)
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Classical group sequential Dunnett tests with “separate stopping”

Closed testing - sequentially rejective tests

Local group sequential tests for HA ∩ HB and HA,HB are needed!!!

HA ∩ HB

group sequential test for HA ∩ HB

HBHA

group sequential test for HA group sequential test for HB

A hypothesis is rejected with FWER α if the intersection hypothesis and
the corresponding elementary hypothesis are rejected locally at level α.

Xi, Tamhane (2015)
Maurer, Bretz (2013)
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Classical group sequential Dunnett tests with “separate stopping”

Closed testing - sequentially rejective tests

HA ∩ HB

Reject if max(ZA,1,ZB,1) > u1 or max(ZA,2,ZB,2) > u2

HBHA

Reject if ZA,1 > v1 or ZA,2 > v2 Reject if ZB,1 > v1 or ZB,2 > v2

u1, u2...global boundaries

v1, v2...elementary boundaries

Koenig, Brannath, Bretz and Posch (2008)
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Group sequential Dunnett tests with “simultaneous stopping”
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Group sequential Dunnett tests with “simultaneous stopping”

Group sequential simultaneous stopping designs

”simultaneous stopping rule”:
If at least one rejection boundary is crossed, the whole trial stops.

Objective: Identify at least one treatment that is superior to control

E.g.: HB is rejected at interim

→ There is no second stage!
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Group sequential Dunnett tests with “simultaneous stopping”

Simultaneous versus Separate stopping

FWER is controlled using the separate stopping design boundaries.

Lower expected sample size compared to separate stopping designs.

The power to reject
any null hypothesis is the same as for separate stopping designs.

both null hypotheses is lower than for separate stopping designs.

→ Trade-off between ESS and conjunctive power!!!

9 / 20



Group sequential Dunnett tests with “simultaneous stopping”

Construction of efficient simultaneous stopping designs

1 Can one relax the interim boundaries when stopping
simultaneously?

2 How large is the impact on ESS and power when stopping
simultaneously or separately?

3 How to optimize the critical boundaries for either stopping rule?
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Question 1: Relaxation of interim boundaries?

Question 1: Relaxation of interim boundaries?

For simultaneous stopping:

The boundaries u1, u2 for the local test of HA ∩HB cannot be relaxed.

The boundaries v1, v2 for the local test of Hj can be relaxed.

Intuitive explanation

If, e.g., HB is rejected at interim, but HA not, HA is no longer tested at
the final analysis and not all α is spent.

It’s possible to choose improved boundaries for the elementary tests.
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Question 1: Relaxation of interim boundaries?

Example: O’Brien Flemming boundaries

What changes when stopping simultaneously?

HA ∩ HB

Reject if max(ZA,1,ZB,1) > u1 or max(ZA,2,ZB,2) > u2

u1 = 3.14, u2 = 2.22

HBHA

Reject if ZA,1 > v1 or ZA,2 > v2 Reject if ZB,1 > v1 or ZB,2 > v2

v1 = 2.80, v2 = 1.98 v1 = 2.80, v2 = 1.98
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Question 1: Relaxation of interim boundaries?

FWER for simultaneous stopping if only HA holds (δA = 0)
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Question 1: Relaxation of interim boundaries?

FWER for simultaneous stopping if only HA holds (δA = 0)

13 / 20



Question 1: Relaxation of interim boundaries?

Example: O’Brien Flemming form of rejection boundaries

Improved boundary at interim for simultaneous stopping:

HA ∩ HB

Reject if max(ZA,1,ZB,1) > u1 or max(ZA,2,ZB,2) > u2

u1 = 3.14, u2 = 2.22

HBHA

Reject if ZA,1 > v1 or ZA,2 > v2 Reject if ZB,1 > v1 or ZB,2 > v2

v ′1 = 2.08, v2 = 1.98 v ′1 = 2.08, v2 = 1.98

For simultaneous stopping there is no second stage test if one of the null
hypotheses can already be rejected at interim.
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Question 2: Impact on ESS and power?

Question 2: Impact on ESS and power?

global boundaries u1 = 3.14, u2 = 2.22

local α for test of HA ∩ HB α = 0.025

separate simultaneous improved
stopping rule stopping rule simultan.

local α for test of Hj 0.025 0.019 0.025

interim boundary v1 2.80 2.80 2.08

final boundary v2 1.98 1.98 1.98
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interim boundary v1 2.80 2.80 2.08

final boundary v2 1.98 1.98 1.98

disj. power 0.8 0.8 0.8
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Question 2: Impact on ESS and power?

global boundaries u1 = 3.14, u2 = 2.22

local α for test of HA ∩ HB α = 0.025

separate simultaneous improved
stopping rule stopping rule simultan.

local α for test of Hj 0.025 0.019 0.025

interim boundary v1 2.80 2.80 2.08

final boundary v2 1.98 1.98 1.98

disj. power 0.8 0.8 0.8

N for δA = δB = 0.5 162 162 162

ESS for δA = δB = 0.5 154 149 149

conj. power for δA = δB = 0.5 0.59 0.50 0.56
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Question 3: Optimizing stopping boundaries

Optimized multi-arm multi-stage designs
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Question 3: Optimizing stopping boundaries

Optimal designs

Scenario “Separate “Simultaneous “Improved simult.
stopping” stopping” stopping”

Boundaries classical group classical group improved group
sequential sequential sequential

Stopping rule separate simultaneous simultaneous
stopping rule stopping rule stopping rule

Nmax chosen to achieve disjunctive power of 0.8

Obj. function minimize ESS under certain
optimize u1, u2 parameter configuration

Obj. function minimize maximize conjunctive
optimize v1, v2 ESS power
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Question 3: Optimizing stopping boundaries

Power to reject both null hypotheses

Power to reject at least one hypothesis = 0.8

Remark: No tradeoff between ESS and conjunctive power!
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Question 3: Optimizing stopping boundaries

Optimal expected sample size (ESS)

Remarks:
1 Percentual reduction gets bigger, but stays between 5 and 12%
2 Tradeoff between ESS and Nmax .
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Discussion

Summary

Simultaneous stopping compared to separate stopping leads to
lower expected sample size
the same power to reject any hypothesis
lower power to reject both hypotheses

Improved boundaries can be used to rescue some of the power to
reject both null hypotheses.

Optimized boundaries for the different stopping rules lead to a
tradeoff between ESS and Nmax .

Limitation: If improved boundaries are used, the simultaneous
stopping rule must be adhered to!

Extensions:
unknown variance: t-test: p-value approach
more treatment arms, stopping for futility
optimal choice of first stage sample size/allocation ratio
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Discussion
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Koenig, Brannath, Bretz (2008): closure principle for Dunnett test,
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Tamhane & Xi (2013): multiple hypotheses and closure principle

Maurer & Bretz (2013): Multiple testing using graphical approaches
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Appendix

FWER inflation when u∗1 = z1−α=1.96

upper bound: α + Φ(u1, u1,−u2) = 0.025 + 0.017 = 0.042
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Appendix

Difference in expected sample size: OBF design
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Appendix

Difference in conjunctive power: OBF design
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Appendix

Unknown variance: Extension to the t test

p-value approach = quantile substitution (Pocock (1977)):
z-score boundaries are converted to p-value boundaries and then
converted to t-score boundaries:

u′i = T2ni−2(Φ−1(ui ))

for known variance: sample size per arm per stage n of 8 for a
power to reject at least one of 0.8 at δA = δB = 1
(separate: ESS=32/power=0.61; improved simultaneous: ESS=30/power=0.51)

Simulation of t-statistics for p-value approach (δA = δB = 1)

Design n α power at least one power both ESS

separate 8 0.0260 0.80 0.56 34

separate 10 0.0258 0.89 0.70 43

imp. sim. 8 0.0260 0.79 0.49 32

imp. sim. 10 0.0258 0.88 0.61 39
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Appendix

Optimal boundaries

δA = 0.5, δB = 0.5

Design separate simultaneous improved simult.

u1 2.64 2.48 2.48

u2 2.29 2.37 2.37

v1 2.09 2.16 2.05

v2 2.29 2.20 1.97

conj. power 0.51 0.44 0.51

ESS 147 138 138

Nmax 168 174 174
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Appendix

Fixed sample Dunnett test

δ1 δ2 N

1 1 45

0.5 0.5 165

1 0 60

1 0.5 57

0.75 0.25 102

0.5 0 228

Table: Total sample sizes for a fixed sample Dunnett test with power 0.8.
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